Lecture 26: Lazy evaluation
and lambda calculus

- What lazy evaluation is
* Why it's usefu
* Implementing lazy evaluation
 Lambda calculus

What is lazy evaluation?

« A slightly different evaluation mechanism for
functional programs that provide additional
power.

« Used In popular functional language Haskell

« Basic idea: Do not evaluate expressions until it
Is really necessary to do so.

What is lazy evaluation?

* In OS,,pst, Change application rule from:

el funx >e e, Vv uix]lv
ee, Uv'

to:
el fuinx >e e, x]Uv
ee, Vv

What difference does it make?
(}u_ Xy = o xeo Al X Jﬁ/) 0 (3/6)
S > kj =0 Hee O X 32/0 =0

Lazy lists

- Laziness principle can apply to cons operation.
 Values = constants | funx ->e | el ;. e2

4.&'Uel::e‘2 e Uy

el:userel::e2 hd el v
lelel::f-zz e2l v

tlelv

« Could do the same for all data type, i.e. make
all constructors lazy.

Using lazy lists
* Consider this OCaml definition:

let rec ints = funi->1i:: ints (i+1)
letintsO=ints 0 < 4.2 30-.-

——,
= >

* What happens in OCaml? What would
happen in lazy OCamt?_) vodmt
& o — \oo **‘(0“1

(- cﬂ — e wE(or)

‘ ‘\'f-(|+\)
‘H\(v = Q 3’—""*)

& (g * > —-——-—\J\E

“Generate and test” paradigm

« Many computations have the form

“generate a list of candidates and choose
the first successful one.”

« Using lazy evaluation, can separate
candidate generation from selection:
— Generate list of candidates — even If infinite
— Search list for successful candidate

 With lazy evaluation, only candidates that
are tested are ever generated.

Example: square roots

* Newton-Raphson method: To find sqrt(x),
generate sequence: <a;>, where a; is
arbitrary, and a,,; = (a; +x/a,)/2. Then
choose first a, s.t. |a-a_|<e.

« let next x a = (a+x/a)/2
letrec repeatfa=a . repeatf (f a)
let rec withineps (a1::a2::as) =

If abs(a2Z2-al1) < eps thena2
else withinips eps (a2::as)
let sqrt x eps = withineps eps (repeat (next x) (x/2)

sameints

« sameints: (int list) list -> (int list) list -> bool
« OCaml:

sameints lis1 lis2 = match (lis1,lis2) with
([1 [1) -> true
(_,[D-= false

([1,_) -= false

([1::xs,[]::ys)-> sameints xs ys
([]::xs,ys) -> sameints xs ys
(_:xs,[]::ys)-> sameints xs ys
(a::as,b::bs) -> (a=b) and sameints as bs;;

sameints
 Lazy OCaml:

flatten lis = match lis with
[1-> 1]
| []::lis’ -> flatten lis’
| (a::as)::lis’ -> a :: flatten (as::lis’)
equal lis1 lis2 = match (lis1,lis2) with
([L[D-> true

| (_[]) -= false
| ([1,_) -= false

| (a::as, b::bs) -> (a=b) and equal as bs
sameints lis1 lis2 = equal (flatten lis1) (flatten lis2)

Implementation of lazy eval.

 Use closure model, modified.

* Introduce new value, called a thunk:
<e,n> - like a closure, but e does not

have to be an abstraction.

77,€ U <funx —> e,1> nlx—><de,,nr-], elv

77,€e, Uy
?],er

if 7'(x)=<e,n7>

U',va +ck\a.?a— V\’(x)‘/b\f

Lambda-calculus
« Historically, “fun x->e” was written “Ax.e”

« Original “functional language” was
proposed by Alonzo Church in 1941:
— Exprs: var's, ix.e, e.€, Haskel? © N x =
— Operational semantics:

» Values: (closed) abstractions

« Computation rule: Apply g-reductions anywhere in
expression; repeat until value is obtained, if ever.
(B-reduction means replacing any subexpression
of the form (Ax.e)e’ by e[e'/x].)

« Computation rule corresponds to lazy
evaluation.

Lambda-calculus (cont.)

* |n a given expression, there may be many
choices of which g-reductions to perform
In which order. Some may nhever lead to a
value, while others do, but:

« Theorem (Church-Rosser) For any
expression e, If two sequences of 3-
reductions lead to a value, then they lead

to the same value.

« Theorem Lambda-calculus is a Turing-
complete language.

